Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Xing Wang,* Ren-Qing Gao, Hong-Fei Wu, Feng-Ying Geng and Xiao-Li Yang

Department of Chemistry, College of Sciences, Tianjin University, Tianjin, 300072, People's Republic of China

Correspondence e-mail:
hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.047$
$w R$ factor $=0.147$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
\{[N-(4-Chlorophenyl)-N-methylamino]methyl\}ferrocene

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}\right)\right]$, the dihedral angle between the substituted cyclopentadienyl ring and the plane of the chlorophenylamino group is $77.4(2)^{\circ}$.

Comment

As a part of our ongoing project on the synthesis and structural characterization of tertiary ferrocenylamines [Wang, Li \& Hou, 2005; Wang, Li, Wu et al., 2005), we report here the structure of the title compound, (I) (Fig. 1). In (I), the ferrocenyl unit adopts a cis conformation with respect to the phenyl ring. The chlorophenyl plane, which also contains the amino N 1 atom, with a mean deviation of 0.012 (8) \AA, makes an angle of $77.4(2)^{\circ}$ with the substituted cyclopentadienyl ring (Table 1). The planar cyclopentadienyl rings of the ferrocenyl unit are nearly parallel to each other.

Experimental

Sodium cyanoborohydride ($0.95 \mathrm{~g}, 15 \mathrm{mmol}$) was added to a stirred solution of N-(p-chlorophenyl)aminomethylferrocene $(1.628 \mathrm{~g}$, 5 mmol) and 37% aqueous formaldehyde ($4 \mathrm{ml}, 50 \mathrm{mmol}$) in aceto-

Figure 1
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary size.
nitrile (30 ml). A dark residue separated. The reaction mixture was stirred for 40 min , and glacial acetic acid was then added dropwise until the solution tested neutral on wet pH paper. Stirring was continued for another 1 h . The reaction mixture was poured into diethyl ether $(60 \mathrm{ml})$ and then washed with $1 N \mathrm{KOH}$ and saturated brine. The ether solution was dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated in vacuo (yield 73%). Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of one week. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClFeN}$: C 63.65, H 5.34, N 4.12\%; found: C 63.61, H 5.57 , N 4.33%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}\right)\right]$
$M_{r}=339.63$
Orthorhombic, Pbca
$a=10.093$ (2) \AA 。
$b=8.8080(19) \AA$
$c=35.159(8) \AA$
$V=3125.5(12) \AA^{3}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.709, T_{\text {max }}=0.901$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.147$
$S=1.11$
2752 reflections
190 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 13$	$1.381(6)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.460(5)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.452(6)$		
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 12$	$118.6(4)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$113.6(3)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 11$	$121.8(4)$		
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$-171.0(4)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$-11.2(6)$

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We are indebted to the Natural Science Foundation of Tianjin City, People's Republic of China, for financial support (grant No. 033609011).

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, H.-X., Li, Y.-J. \& Hou, J.-F. (2005). Acta Cryst. E61, m1785-m1786.
Wang, H.-X., Li, Y.-J., Wu, H.-F., Zhou, H.-C., Gao, R.-Q. \& Geng, F.-Y. (2005). Acta Cryst. E61, m1871-m1872.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

